ar X iv : m at h / 99 10 10 7 v 1 [ m at h . A G ] 2 1 O ct 1 99 9 DEFINABLE SETS , MOTIVES AND P - ADIC INTEGRALS

نویسندگان

  • JAN DENEF
  • FRANÇOIS LOESER
چکیده

We associate a canonical virtual motive to definable sets over a field of characteristic zero. We use this construction to to show that very general p-adic integrals are canonically interpolated by motivic ones.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ar X iv : m at h / 02 05 20 7 v 1 [ m at h . R T ] 1 9 M ay 2 00 2 Can p - adic integrals be computed ?

This article gives an introduction to arithmetic motivic integration in the context of p-adic integrals that arise in representation theory. A special case of the fundamental lemma is interpreted as an identity of Chow motives.

متن کامل

2 2 O ct 1 99 9 DEFINABLE SETS , MOTIVES AND P - ADIC INTEGRALS

Introduction 0.1. Let X be a scheme, reduced and separated, of finite type over Z. For p a prime number, one may consider the set X(Z p) of its Z p-rational points. For every n in N, there is a natural map π n : X(Z p) → X(Z/p n+1) assigning to a Z p-rational point its class modulo p n+1. The image Y n,p of X(Z p) by π n is exactly the set of Z/p n+1-rational points which can be lifted to Z p-r...

متن کامل

ar X iv : a lg - g eo m / 9 61 00 07 v 1 6 O ct 1 99 6 CHOW MOTIVES OF ELLIPTIC MODULAR SURFACES AND THREEFOLDS

The main result of this paper is the proof for elliptic modular threefolds of some conjectures formulated by the second-named author and shown by Jannsen to be equivalent to a conjecture of Beilinson on the filtration on the Chow groups of smooth projective varieties. These conjectures are known to be true for surfaces in general, but for elliptic modular surfaces we obtain more precise results...

متن کامل

Orbital Integrals Are Motivic

This article shows that under general conditions, p-adic orbital integrals of definable functions are represented by virtual Chow motives. This gives an explicit example of the philosophy of Denef and Loeser, which predicts that all “naturally occurring” p-adic integrals are motivic.

متن کامل

DEFINABLE SETS, MOTIVES AND p-ADIC INTEGRALS

0.1. Let X be a scheme, reduced and separated, of finite type over Z. For p a prime number, one may consider the set X(Zp) of its Zp-rational points. For every n in N, there is a natural map πn : X(Zp)→ X(Z/p) assigning to a Zp-rational point its class modulo p. The image Yn,p of X(Zp) by πn is exactly the set of Z/p-rational points which can be lifted to Zp-rational points. Denote by Nn,p the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999